On product identities and the Chow rings of holomorphic symplectic varieties

نویسندگان

چکیده

For a moduli space $${\mathsf M}$$ of stable sheaves over K3 surface X, we propose series conjectural identities in the Chow rings $$CH_\star ({\mathsf M}\times X^\ell ),\, \ell \ge 1,$$ generalizing classic Beauville–Voisin identity for surface. We emphasize consequences conjecture structure tautological subring $$R_\star M}) \subset CH_\star M}).$$ The places all classes lowest piece natural filtration emerging on M})$$ , which also discuss. prove proposed when is Hilbert scheme points

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection Numbers of Extremal Rays on Holomorphic Symplectic Varieties

Suppose X is a smooth projective complex variety. Let N1(X,Z) ⊂ H2(X,Z) and N (X,Z) ⊂ H(X,Z) denote the group of curve classes modulo homological equivalence and the Néron-Severi group respectively. The monoids of effective classes in each group generate cones NE1(X) ⊂ N1(X,R) and NE (X) ⊂ N(X,R) with closures NE1(X) and NE 1 (X), the pseudoeffective cones. These play a central rôle in the bira...

متن کامل

Fourier-stable Subrings in the Chow Rings of Abelian Varieties

We study subrings in the Chow ring CH∗(A)Q of an abelian variety A, stable under the Fourier transform with respect to an arbitrary polarization. We prove that by taking Pontryagin products of classes of dimension ≤ 1 one gets such a subring. We also show how to construct finite-dimensional Fourier-stable subrings in CH∗(A)Q. Another result concerns the relation between the Pontryagin product a...

متن کامل

Extremal Rays and Automorphisms of Holomorphic Symplectic Varieties

For last fifteen years, numerous authors have studied the birational geometry of projective irreducible holomorphic symplectic varieties X, seeking to relate extremal contractions X → X ′ to properties of the Hodge structures on H(X,Z) and H2(X,Z), regarded as lattices under the Beauville-Bogomolov form. Significant contributions have been made by Huybrechts, Markman, O’Grady, Verbitsky, and ma...

متن کامل

Chow Rings of Toric Varieties Defined by Atomic Lattices

We study a graded algebra D=D(L,G) defined by a finite lattice L and a subset G in L, a so-called building set. This algebra is a generalization of the cohomology algebras of hyperplane arrangement compactifications found in work of De Concini and Procesi [D2]. Our main result is a representation of D, for an arbitrary atomic lattice L, as the Chow ring of a smooth toric variety that we constru...

متن کامل

On Identities with Additive Mappings in Rings

begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica-new Series

سال: 2022

ISSN: ['1022-1824', '1420-9020']

DOI: https://doi.org/10.1007/s00029-021-00729-z